Learning Deep Architectures for AI

نویسنده

  • Yoshua Bengio
چکیده

Theoretical results suggest that in order to learn the kind of complicated functions that can represent highlevel abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

Deep and Modular Neural Networks

In this chapter, we focus on two important areas in neural computation, i.e., deep and modular neural networks, given the fact that both deep and modular neural networks have been among the most powerful machine learning and pattern recognition techniques for complex AI problem solving. We begin by providing a general overview of deep and modular neural networks to describe the general motivati...

متن کامل

Mainiway AI Lab @ DSAP Shared Task: Ensembles of Deep Architectures for Valence-Arousal Prediction

This paper introduces Mainiway AI Labs submitted system for the IJCNLP 2017 shared task on Dimensional Sentiment Analysis of Chinese Phrases (DSAP), and related experiments. Our approach consists of deep neural networks with various architectures, and our best system is a voted ensemble of networks. We achieve a Mean Absolute Error of 0.64 in valence prediction and 0.68 in arousal prediction on...

متن کامل

A Taxonomy of Deep Convolutional Neural Nets for Computer Vision

Traditional architectures for solving computer vision problems and the degree of success they enjoyed have been heavily reliant on hand-crafted features. However, of late, deep learning techniques have offered a compelling alternative – that of automatically learning problem-specific features. With this new paradigm, every problem in computer vision is now being re-examined from a deep learning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Foundations and Trends in Machine Learning

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2009